Q
Why do I need a home inspection?
A

A home inspection is an all-encompassing examination of the condition of a home.   The home inspection process is often but not always performed at the time of the sale of the home. A home is one of the most important purchases one will ever make.  A home inspection is an inexpensive way to discover the universal condition of a home.  It is important to conduct a home inspection to avoid a costly mistake by purchasing a property in need of major repairs.  Even if you think you have found a “dream home,” it is a home inspector’s responsibility to let you know that your “dream home” may not be just right.

A certified home inspector is a professional who will conduct an inspection of the general condition of the home.  A good home inspection will assist a buyer in understanding exactly what they are about to acquire.  A home may look move in ready, but an inspector will cover features of the house such as electrical wiring, plumbing, roofing, insulation, as well as structural features of the home and may unveil issues that are not noticeable to the buyer’s eye.  As a buyer, you are making a vast investment, and it is important to understand exactly what you are purchasing.  Having a certified home inspector conduct a thorough inspection of the prospective property, could be compared to taking out an insurance policy against all potential operating costs.

There are many different types of home inspection processes that you may want to conduct before the purchase of a home.  First and most importantly, you would need a general or residential inspection performed on the home.  The certified home inspector would inspect the structure, exterior, roof, electrical, plumbing, HVAC, interior, insulation and ventilation.  Once the inspection is completed, the home inspector will generally provide the buyer with a report suggesting any improvements or repairs deemed necessary to bring the home up to current standards.  Home inspections may often reveal problems with a home that could be pricey to fix.  This could be used as a great tool in purchasing negotiations with the seller.  As the buyer you may be able to negotiate the price dependant on what the inspector has found.  If flaws were found within the home, the buyer now would have a couple more options in negotiations.  A buyer could negotiate a credit with the sellers, have the seller pay for repairs before the closing, purchase the home as is, or walk away from the purchase if the issues seem too problematic.

Q
What is involved in a Home Inspection?
A

THERMO IMAGING – Thermo imaging is included at no extra cost, we believe that you deserve the best inspection you can get without spending extra money.

STRUCTURAL COMPONENTS – including foundation, floors, walls, columns, ceilings, and roofs.

EXTERIOR OF STRUCTURE – including wall cladding, entryway doors, decks, steps, eaves, driveways and a representative number of windows.

PLUMBING – including interior water supply and distribution system, interior drains waste and vent system, hot water system, fuel storage and distribution system, and sump pump.

ELECTRICAL – including service entrance conductors, service equipment, main distribution panels, voltage ratings, a representative number of installed ceiling fans, lighting fixtures, switches and receptacles, ground fault circuit interrupters, arc-fault breakers, carbon monoxide detectors and smoke detectors.

SYSTEM HEATING – including permanently installed heating system and its controls, chimneys, heat distribution system, including fans, pumps, and ducts, and automatic safety controls.

CENTRAL AIR CONDITIONING – including normal operating control of the central air conditioning system and the distribution system.

INTERIOR – including walls, ceilings, floors, steps, a representative number of cabinets and a representative number of doors and windows.

INSULATION AND VENTILATION – including insulation vapor barriers, ventilation of attic and foundation, kitchen, bathroom and laundry venting systems, and the operation of any readily accessible attic ventilation fan when temperature permits.

BUILT-IN KITCHEN APPLIANCES – including the observation and operation of dishwasher, range, trash compactor, garbage disposal, ventilation equipment, permanently installed oven and microwave oven.

Also included as part of the report are all of the pictures taken during the inspection. These range from general views of the interior and exterior of the home to any issues that may need further investigation and or repair/replacement.

Our report includes pages for each topic listed above as well as a Summary page. Each page includes check points for various items but what makes our reports different than most is the detailed explanations. The reports are written in plain English to help the client better understand the issues. In most cases the report is completed within 24-48 hours and emailed to the client.

Q
Home Inspection Reports: What To Expect?
A
Influenced by the changes in the economic and legal environments over the past 30 years, home inspection reports have changed to accommodate increased consumer expectations, and to provide more extensive information and protection to both inspectors and their clients.
Development of Standards
Prior to the mid-1970s, inspection reports followed no standard guidelines and, for the most part, there was little or no oversight or licensure. As might be imagined, without minimum standards to follow, the quality of inspection reports varied widely, and the home inspection industry was viewed with some suspicion.
With the founding of the American Society of Home Inspectors (ASHI) in 1976, home inspection guidelines governing inspection report content became available in the form of a Standards of Practice. Over time, a second, larger trade association, the International Association of Certified Home Inspectors (InterNACHI), came into existence, and developed its own standards.
InterNACHI has grown to dominate the inspection industry and, in addition to its Residential Standards of Practice, it has developed a comprehensive Standards of Practice for the Inspection of Commercial Properties.  Today, most types of inspections from mold to fire door inspections are performed in accordance with one of InterNACHI’s Standards of Practice.
As a consumer, you should take the time to examine the Standards of Practice followed by your inspector. If he is unaffiliated with any professional inspection organization, and his reports follow no particular standards, find another inspector.
Generally speaking, reports should describe the major home systems, their crucial components, and their operability, especially the ones in which failure can result in dangerous or expensive-to-correct conditions. Defects should be adequately described, and the report should include recommendations.
Reports should also disclaim portions of the home not inspected. Since home inspections are visual inspections, the parts of the home hidden behind floor, wall and ceiling coverings should be disclaimed.
Home inspectors are not experts in every system of the home, but are trained to recognize conditions that require a specialist inspection.
Home inspections are not technically exhaustive, so the inspector will not disassemble a furnace to examine the heat exchanger closely, for example.
Standards of Practice are designed to identify both the requirements of a home inspection and the limitations of an inspection.
Checklist and Narrative Reports
In the early years of the home inspection industry, home inspection reports consisted of a simple checklist, or a one- or two-page narrative report.
Checklist reports are just that; very little is actually written. The report is a series of boxes with short descriptions after them. Descriptions are often abbreviated, and might consist of only two or three words, such as “peeling paint.” The entire checklist might only be four or five pages long. Today, some inspection legal agreements are almost that long!
Because of the lack of detailed information, checklist reports leave a lot open to interpretation, so that buyers, sellers, agents, contractors, attorneys and judges may each interpret the information differently, depending on their motives.
In the inspection business, phrases that describe conditions found during an inspection are called “narratives.”  Narrative reports use reporting language that more completely describes each condition. Descriptions are not abbreviated.
Both checklist and narrative reports are still in use today, although many jurisdictions are now beginning to ban checklist reports because the limited information they offer has resulted in legal problems.
From the standpoint of liability, narrative reports are widely considered safer, since they provide more information and state it more clearly.
Many liability issues and problems with the inspection process are due to misunderstandings about what was to be included in the report, or about what the report says.
For example, in 2002, an investor bought a 14-unit hotel in California.  The six-page narrative report mentioned that flashing where the second-story concrete walkway met the building was improperly installed, and the condition could result in wood decay. Four years later, the investor paid out almost $100,000 to demolish and replace the entire upper walkway. In some places, it was possible to push a pencil through support beams.
Although the inspector’s report had mentioned the problem, it hadn’t made clear the seriousness of the condition, or the possible consequences of ignoring it. Today, a six-page report would be considered short for a small house.

Development of Reporting Software

Years ago, when computers were expensive to buy and difficult to operate, inspection reports were written by hand. As computers became simpler to operate and more affordable, inspection software began to appear on the market.

Today, using this software, an inspector can chose from a large number of organized boilerplate narratives that s/he can edit or add to in order to accommodate local conditions, since inspectors in a hot, humid city like Tampa Bay, Florida, are likely to find types of problems different from those found by inspectors in a cold, dry climate, like Salt Lake City, Utah.

Using narrative software and checking boxes in categories that represent the home systems, an inspector can produce a very detailed report in a relatively short time.

For example, using a checklist report, an inspector finding a number of inoperable lights in a home would check a box in the “INTERIOR” section labeled something like “some lights inoperable,” and that would be the limit of the information passed on to the client.

Using inspection software, in the “INTERIOR” section of the program, an inspector might check a box labeled “some lights inoperable.”  This would cause the following narrative to appear in the “INTERIOR” section of the inspection report:

“Some light fixtures in the home appeared to be inoperable. The bulbs may be burned out, or a problem may exist with the fixtures, wiring or switches.
If after the bulbs are replaced, these lights still fail to respond to the switch, this condition may represent a potential fire hazard, and the Inspector recommends that an evaluation and any necessary repairs be performed by a qualified electrical contractor.”

Standard disclaimers and other information can be pre-checked to automatically appear in each report.

Narrative Content

Narratives typically consists of three parts:

  1. a description of a condition of concern;
  2. a sentence or paragraph describing how serious the condition is, and the potential ramifications, answering questions such as, “Is it now stable, or will the problem continue?” or “Will it burn down the house?” and “When?”; and
  3. a recommendation. Recommendations may be for specific actions to be taken, or for further evaluation, but they should address problems in such a way that the reader of the report will understand how to proceed.

“Typically” is a key word here. Some narratives may simply give the ampacity of the main electrical disconnect. There is no need for more than one sentence. Different inspectors would include what they think is necessary.

Report Content

Inspection reports often begin with an informational section which gives general information about the home, such as the client’s name, the square footage, and the year the home was built.

Other information often listed outside the main body of the report, either near the beginning or near the end, are disclaimers, and sometimes a copy of the inspection agreement, and sometimes a copy of the Standards of Practice.  A page showing the inspector’s professional credentials, designations, affiliations and memberships is also often included.  And it is a good idea to include InterNACHI’s Now That You’ve Had a Home Inspection book.

Inspection reports often include a summary report listing major problems to ensure that important issues are not missed by the reader. It’s important that the reader be aware of safety issues or conditions which will be expensive to correct. With this in mind, some inspectors color-code report narratives, although many feel that color-coding exposes them to increased liability and don’t do this.

Software often gives inspectors the choice of including photographs in the main body of the report, near the narrative that describes them, or photographs may be grouped together toward the beginning or end of the report.

A table of contents is usually provided.

The main body of the report may be broken down into sections according to home systems, such as “ELECTRICAL,” “PLUMBING,” “HEATING,” etc., or it may be broken down by area of the home:  “EXTERIOR,” “INTERIOR,” “KITCHEN,” “BEDROOMS,” etc.

It often depends on how the inspector likes to work.

Sample Reports

Many inspectors have websites which include sample inspection reports for prospective clients to view. Take the time to look at them. Also often included is a page explaining the scope of the inspection. The inspection contract is usually included on the website, and it should give you a good idea of what will be included in the report.

In conclusion, for consumers to have realistic expectations about what information will be included in the home inspection report, follow these tips:

  • read the Standards of Practice;
  • read the Contract;
  • view a sample Inspection Report; and
  • talk with the inspector.
Q
Is there a way to save money in energy costs?
A

Most people don’t know how easy it is to make their homes run on less energy, and here at InterNACHI, we want to change that. Drastic reductions in heating, cooling and electricity costs can be accomplished through very simple changes, most of which homeowners can do themselves. Of course, for homeowners who want to take advantage of the most up-to-date knowledge and systems in home energy efficiency, InterNACHI energy auditors can perform in-depth testing to find the best energy solutions for your particular home.

Why make your home more energy efficient? Here are a few good reasons:

  • Federal, state, utility and local jurisdictions’ financial incentives, such as tax breaks, are very advantageous for homeowners in most parts of the U.S.
  • It saves money. It costs less to power a home that has been converted to be more energy-efficient.
  • It increases the comfort level indoors.
  • It reduces our impact on climate change. Many scientists now believe that excessive energy consumption contributes significantly to global warming.
  • It reduces pollution. Conventional power production introduces pollutants that find their way into the air, soil and water supplies.

1. Find better ways to heat and cool your house. 

As much as half of the energy used in homes goes toward heating and cooling. The following are a few ways that energy bills can be reduced through adjustments to the heating and cooling systems:

  • Install a ceiling fan. Ceiling fans can be used in place of air conditioners, which require a large amount of energy.
  • Periodically replace air filters in air conditioners and heaters.
  • Set thermostats to an appropriate temperature. Specifically, they should be turned down at night and when no one is home. In most homes, about 2% of the heating bill will be saved for each degree that the thermostat is lowered for at least eight hours each day. Turning down the thermostat from 75° F to 70° F, for example, saves about 10% on heating costs.
  • Install a programmable thermostat. A programmable thermostat saves money by allowing heating and cooling appliances to be automatically turned down during times that no one is home and at night. Programmable thermostats contain no mercury and, in some climate zones, can save up to $150 per year in energy costs.
  • Install a wood stove or a pellet stove. These are more efficient sources of heat than furnaces.
  • At night, curtains drawn over windows will better insulate the room.

2. Install a tankless water heater.

Demand-type water heaters (tankless or instantaneous) provide hot water only as it is needed. They don’t produce the standby energy losses associated with traditional storage water heaters, which will save on energy costs. Tankless water heaters heat water directly without the use of a storage tank. When a hot water tap is turned on, cold water travels through a pipe into the unit. A gas burner or an electric element heats the water. As a result, demand water heaters deliver a constant supply of hot water. You don’t need to wait for a storage tank to fill up with enough hot water.

3. Replace incandescent lights.

The average household dedicates 11% of its energy budget to lighting. Traditional incandescent lights convert approximately only 10% of the energy they consume into light, while the rest becomes heat. The use of new lighting technologies, such as light-emitting diodes (LEDs) and compact fluorescent lamps (CFLs), can reduce the energy use required by lighting by 50% to 75%. Advances in lighting controls offer further energy savings by reducing the amount of time that lights are on but not being used. Here are some facts about CFLs and LEDs:

  • CFLs use 75% less energy and last about 10 times longer than traditional incandescent bulbs.
  • LEDs last even longer than CFLs and consume less energy.
  • LEDs have no moving parts and, unlike CFLs, they contain no mercury.

4. Seal and insulate your home.

Sealing and insulating your home is one of the most cost-effective ways to make a home more comfortable and energy-efficient, and you can do it yourself. A tightly sealed home can improve comfort and indoor air quality while reducing utility bills. An InterNACHI energy auditor can assess  leakage in the building envelope and recommend fixes that will dramatically increase comfort and energy savings.

The following are some common places where leakage may occur:

  • electrical receptacles/outlets;
  • mail slots;
  • around pipes and wires;
  • wall- or window-mounted air conditioners;
  • attic hatches;
  • fireplace dampers;
  • inadequate weatherstripping around doors;
  • baseboards;
  • window frames; and
  • switch plates.

Because hot air rises, air leaks are most likely to occur in the attic. Homeowners can perform a variety of repairs and maintenance to their attics that save them money on cooling and heating, such as:

  • Plug the large holes. Locations in the attic where leakage is most likely to be the greatest are where walls meet the attic floor, behind and under attic knee walls, and in dropped-ceiling areas.
  • Seal the small holes. You can easily do this by looking for areas where the insulation is darkened. Darkened insulation is a result of dusty interior air being filtered by insulation before leaking through small holes in the building envelope. In cold weather, you may see frosty areas in the insulation caused by warm, moist air condensing and then freezing as it hits the cold attic air. In warmer weather, you’ll find water staining in these same areas. Use expanding foam or caulk to seal the openings around plumbing vent pipes and electrical wires. Cover the areas with insulation after the caulk is dry.
  • Seal up the attic access panel with weatherstripping. You can cut a piece of fiberglass or rigid foamboard insulation in the same size as the attic hatch and glue it to the back of the attic access panel. If you have pull-down attic stairs or an attic door, these should be sealed in a similar manner.

5. Install efficient showerheads and toilets.

The following systems can be installed to conserve water usage in homes:

  • low-flow showerheads. They are available in different flow rates, and some have a pause button which shuts off the water while the bather lathers up;
  • low-flow toilets. Toilets consume 30% to 40% of the total water used in homes, making them the biggest water users. Replacing an older 3.5-gallon toilet with a modern, low-flow 1.6-gallon toilet can reduce usage an average of 2 gallons-per-flush (GPF), saving 12,000 gallons of water per year. Low-flow toilets usually have “1.6 GPF” marked on the bowl behind the seat or inside the tank;
  • vacuum-assist toilets. This type of toilet has a vacuum chamber that uses a siphon action to suck air from the trap beneath the bowl, allowing it to quickly fill with water to clear waste. Vacuum-assist toilets are relatively quiet; and
  • dual-flush toilets. Dual-flush toilets have been used in Europe and Australia for years and are now gaining in popularity in the U.S. Dual-flush toilets let you choose between a 1-gallon (or less) flush for liquid waste, and a 1.6-gallon flush for solid waste. Dual-flush 1.6-GPF toilets reduce water consumption by an additional 30%.

6. Use appliances and electronics responsibly.

Appliances and electronics account for about 20% of household energy bills in a typical U.S. home. The following are tips that will reduce the required energy of electronics and appliances:

  • Refrigerators and freezers should not be located near the stove, dishwasher or heat vents, or exposed to direct sunlight. Exposure to warm areas will force them to use more energy to remain cool.
  • Computers should be shut off when not in use. If unattended computers must be left on, their monitors should be shut off. According to some studies, computers account for approximately 3% of all energy consumption in the United States.
  • Use efficient ENERGY STAR-rated appliances and electronics. These devices, approved by the U.S. Department of Energy and the Environmental Protection Agency’s ENERGY STAR Program, include TVs, home theater systems, DVD players, CD players, receivers, speakers, and more. According to the EPA, if just 10% of homes used energy-efficient appliances, it would reduce carbon emissions by the equivalent of 1.7 million acres of trees.
  • Chargers, such as those used for laptops and cell phones, consume energy when they are plugged in. When they are not connected to electronics, chargers should be unplugged.
  • Laptop computers consume considerably less electricity than desktop computers.

7. Install daylighting as an alternative to electrical lighting.

Daylighting is the practice of using natural light to illuminate the home’s interior. It can be achieved using the following approaches:

  • skylights. It’s important that they be double-pane or they may not be cost-effective. Flashing skylights correctly is key to avoiding leaks;
  • light shelves. Light shelves are passive devices designed to bounce light deep into a building. They may be interior or exterior. Light shelves can introduce light into a space up to 2½ times the distance from the floor to the top of the window, and advanced light shelves may introduce four times that amount;
  • clerestory windows.  Clerestory windows are short, wide windows set high on the wall. Protected from the summer sun by the roof overhang, they allow winter sun to shine through for natural lighting and warmth; and
  • light tubes.  Light tubes use a special lens designed to amplify low-level light and reduce light intensity from the midday sun. Sunlight is channeled through a tube coated with a highly reflective material, and then enters the living space through a diffuser designed to distribute light evenly.

8. Insulate windows and doors.

About one-third of the home’s total heat loss usually occurs through windows and doors. The following are ways to reduce energy lost through windows and doors:

  • Seal all window edges and cracks with rope caulk. This is the cheapest and simplest option.
  • Windows can be weatherstripped with a special lining that is inserted between the window and the frame. For doors, apply weatherstripping around the whole perimeter to ensure a tight seal when they’re closed. Install quality door sweeps on the bottom of the doors, if they aren’t already in place.
  • Install storm windows at windows with only single panes. A removable glass frame can be installed over an existing window.
  • If existing windows have rotted or damaged wood, cracked glass, missing putty, poorly fitting sashes, or locks that don’t work, they should be repaired or replaced.

9. Cook smart.

An enormous amount of energy is wasted while cooking. The following recommendations and statistics illustrate less wasteful ways of cooking:

  • Convection ovens are more efficient that conventional ovens. They use fans to force hot air to circulate more evenly, thereby allowing food to be cooked at a lower temperature. Convection ovens use approximately 20% less electricity than conventional ovens.
  • Microwave ovens consume approximately 80% less energy than conventional ovens.
  • Pans should be placed on the matching size heating element or flame.
  • Using lids on pots and pans will heat food more quickly than cooking in uncovered pots and pans.
  • Pressure cookers reduce cooking time dramatically.
  • When using conventional ovens, food should be placed on the top rack. The top rack is hotter and will cook food faster.

10. Change the way you do laundry.

  • Do not use the medium setting on your washer. Wait until you have a full load of clothes, as the medium setting saves less than half of the water and energy used for a full load.
  • Avoid using high-temperature settings when clothes are not very soiled. Water that is 140° F uses far more energy than 103° F for the warm-water setting, but 140° F isn’t that much more effective for getting clothes clean.
  • Clean the lint trap every time before you use the dryer. Not only is excess lint a fire hazard, but it will prolong the amount of time required for your clothes to dry.
  • If possible, air-dry your clothes on lines and racks.
  • Spin-dry or wring clothes out before putting them into a dryer.
Homeowners who take the initiative to make these changes usually discover that the energy savings are more than worth the effort. InterNACHI home inspectors can make this process much easier because they can perform a more comprehensive assessment of energy-savings potential than the average homeowner can.
Q
Should I get a RADON test?
A Short Answer Yes it is recommended.

The EPA recommends:

  • If you are buying a home or selling your home, have it tested for radon.
  • For a new home, ask if radon-resistant construction features were used and if the home has been tested.
  • Fix the home if the radon level is 4 picoCuries per liter (pCi/L) or higher.
  • Radon levels less than 4 pCi/L still pose a risk, and in many cases, may be reduced.
  • Take steps to prevent device interference when conducting a radon test.

The EPA estimates that radon causes thousands of cancer deaths in the U.S. each year.

 * Radon is estimated to cause about 21,000 lung cancer deaths per year.

The numbers of deaths from other causes are taken from the Centers for Disease Control and Prevention’s 1999-2001 National Center for Injury Prevention and Control Report and 2002 National Safety Council Reports.

Radon is a cancer-causing, radioactive gas.

You cannot see, smell or taste radon. But it still may be a problem in your home.  When you breathe air containing radon, you increase your risk of getting lung cancer.  In fact, the Surgeon General of the United States has warned that radon is the second leading cause of lung cancer in the United States today.  If you smoke and your home has high radon levels, your risk of lung cancer is especially high.

You should test for radon.

Testing is the only way to find out your home’s radon levels. The EPA and the Surgeon General recommend testing all homes below the third floor for radon.

You can fix a radon problem.

If you find that you have high radon levels, there are ways to fix a radon problem. Even very high levels can be reduced to acceptable levels.

If You Are Selling a Home…

The EPA recommends that you test your home before putting it on the market and, if necessary, lower your radon levels. Save the test results and all information you have about steps that were taken to fix any problems. This could be a positive selling point.

If You Are Buying a Home…

The EPA recommends that you know what the indoor radon level is in any home you are considering buying.  Ask the seller for their radon test results.  If the home has a radon-reduction system, ask the seller for information they have about the system.

If the home has not yet been tested, you should have the house tested.

If you are having a new home built, there are features that can be incorporated into your home during construction to reduce radon levels.

These radon testing guidelines have been developed specifically to deal with the time-sensitive nature of home purchases and sales, and the potential for radon device interference.  These guidelines are slightly different from the guidelines in other EPA publications which provide radon testing and reduction information for non-real estate situations.

This guide recommends three short-term testing options for real estate transactions.  The EPA also recommends testing a home in the lowest level which is currently suitable for occupancy, since a buyer may choose to live in a lower area of the home than that used by the seller.

1. Why do you need to test for radon?

a. Radon has been found in homes all over the U.S.

Radon is a radioactive gas that has been found in homes all over the United States. It comes from the natural breakdown of uranium in soil, rock and water, and gets into the air you breathe. Radon typically moves up through the ground to the air above, and into your home through cracks and other holes in the foundation. Radon can also enter your home through well water. Your home can trap radon inside.

Any home can have a radon problem, including new and old homes, well-sealed and drafty homes, and homes with or without basements. In fact, you and your family are most likely to get your greatest radiation exposure at home. That is where you spend most of your time.

Nearly one out of every 15 homes in the United States is estimated to have an elevated radon level (4 pCi/L or more).  Elevated levels of radon gas have been found in homes in your state.

b. The EPA and the Surgeon General recommend that you test your home.

Testing is the only way to know if you and your family are at risk from radon. The EPA and the Surgeon General recommend testing all homes below the third floor for radon.

You cannot predict radon levels based on state, local, or neighborhood radon measurements.  Do not rely on radon test results taken in other homes in the neighborhood to estimate the radon level in your home.  Homes which are next to each other can have different radon levels.  Testing is the only way to find out what your home’s radon level is.

In some areas, companies may offer different types of radon service agreements.  Some agreements let you pay a one-time fee that covers both testing and radon mitigation, if needed.

U.S. Surgeon General’s
Health Advisory

“Indoor radon gas is the second-leading cause of lung cancer in the United States, and breathing it over prolonged periods can present a significant health risk to families all over the country.  It’s important to know that this threat is completely preventable.  Radon can be detected with a simple test, and fixed through well-established venting techniques.”

January 2005

2. I’m selling a home.  What should I do?

a. If your home has already been tested for radon…

If you are thinking of selling your home and you have already tested your home for radon, review the Radon Testing Checklist to make sure that the test was done correctly.  If so, provide your test results to the buyer.

No matter what kind of test you took, a potential buyer may ask for a new test, especially if:

the Radon Testing Checklist items were not met;

the last test is not recent, (e.g., within two years);

you have renovated or altered your home since you tested; or

the buyer plans to live in a lower level of the house than was tested, such as a basement suitable for occupancy but not currently lived in.

A buyer may also ask for a new test if your state or local government requires disclosure of radon information to buyers.

b. If your home has not yet been tested for radon…

Have a test taken as soon as possible. If you can, test your home before putting it on the market.  You should test in the lowest level of the home which is suitable for occupancy. This means testing in the lowest level that you currently live in or a lower level not currently used, but which a buyer could use for living space without renovations.

The radon test result is important information about your home’s radon level.  Some states require radon measurement testers to follow a specific testing protocol.  If you do the test yourself, you should carefully follow the testing protocol for your area or the EPA’s Radon Testing Checklist.  If you hire a contractor to test your residence, protect yourself by hiring a qualified individual or company.

You can determine a service provider’s qualifications to perform radon measurements or to mitigate your home in several ways.  Many states require radon professionals to be licensed, certified or registered.  Most states can provide you with a list of knowledgeable radon service providers doing business in your state.  In states that don’t regulate radon services, ask the contractor if they hold a professional proficiency or certification credential. Such programs usually provide members with a photo-ID card which indicates their qualification(s) and its expiration date.  If in doubt, you should check with their credentialing organization.  Alternatively, ask the contractor if they’ve successfully completed formal training appropriate for testing or mitigation, e.g., a course in radon measurement or radon mitigation.

3. I’m buying a home.  What should I do?
a. If the home has already been tested for radon…

If you are thinking of buying a home, you may decide to accept an earlier test result from the seller, or ask the seller for a new test to be conducted by a qualified radon tester.  Before you accept the seller’s test, you should determine the results of previous testing by finding out:

who conducted the previous test (the homeowner, a radon professional, or some other person);

where in the home the previous test was taken, especially if you may plan to live in a lower level of the home.  For example, the test may have been taken on the first floor.  However, if you want to use the basement as living space, test there, too;

what, if any, structural changes, alterations, or changes in the heating, ventilation, and air conditioning (HVAC) system have been made to the house since the test was done.  Such changes may affect radon levels.

If you accept the seller’s test, make sure that the test followed the Radon Testing Checklist.

If you decide that a new test is needed, discuss it with the seller as soon as possible.

b. If the home has not yet been tested for radon…

Make sure that a radon test is done as soon as possible. Consider including provisions in the contract specifying:

where the test will be located;

who should conduct the test;

what type of test to do;

when to do the test;

how the seller and the buyer will share the test results and test costs (if necessary); and

when radon mitigation measures will be taken, and who will pay for them.
Make sure that the test is done in the lowest level of the home suitable for occupancy. This means the lowest level that you are going to use as living space which is finished or does not require renovations prior to use. A state or local radon official or qualified radon tester can help you make some of these decisions. If you decide to finish or renovate an unfinished area of the home in the future, a radon test should be taken before starting the project, and after the project is finished. Generally, it is less expensive to install a radon-reduction system before (or during) renovations rather than afterward.

4. I’m buying or building a new home.  How can I protect my family?

a. Why should I buy a radon-resistant home?

Radon-resistant techniques work.  When installed properly and completely, these simple and inexpensive passive techniques can help to reduce radon levels.  In addition, installing them at the time of construction makes it easier to reduce radon levels further if the passive techniques don’t reduce radon levels below 4 pCi/L.  Radon-resistant techniques may also help to lower moisture levels and those of other soil-gases.  Radon-resistant techniques:

make upgrading easy:  Even if built to be radon-resistant, every new home should be tested for radon after occupancy.  If you have a test result of 4 pCi/L or more, a vent fan can easily be added to the passive system to make it an active system, and further reduce radon levels.
are cost-effective:  Building radon-resistant features into the house during construction is easier and cheaper than fixing a radon problem from scratch later.  Let your builder know that radon-resistant features are easy to install using common building materials.
save money:  When installed properly and completely, radon-resistant techniques can also make your home more energy-efficient and help you save on your energy costs.

In a new home, the cost to install passive radon-resistant features during construction is usually between $350 to $500.  In some areas, the cost may be as low as $100.  A qualified mitigator will charge about $300 to add a vent fan to a passive system, making it an active system and further reducing radon levels.  In an existing home, it usually costs between $800 to $2,500 to install a radon mitigation system.

b. What are radon-resistant features?

Radon-resistant features may vary for different foundations and site requirements.  If you’re having a house built, you can learn about the EPA’s Model Standards (and architectural drawings) and explain the techniques to your builder.  If your new house was built (or will be built) to be radon-resistant, it will include these basic elements:

  1. gas-permeable layer:  This layer is placed beneath the slab or flooring system to allow the soil gas to move freely underneath the house.  In many cases, the material used is a 4-inch layer of clean gravel.  This gas-permeable layer is used only in homes with basement and slab-on-grade foundations; it is not used in homes with crawlspace foundations.
  2. plastic sheeting:  Plastic sheeting is placed on top of the gas-permeable layer and under the slab to help prevent the soil gas from entering the home.  In crawlspaces, the sheeting (with seams sealed) is placed directly over the crawlspace floor.
  3. sealing and caulking:  All below-grade openings in the foundation and walls are sealed to reduce soil-gas entry into the home.
  4. vent pipe:  A 3- or 4-inch PVC pipe (or other gas-tight pipe) runs from the gas-permeable layer through the house to the roof to safely vent radon and other soil gases to the outside.
  5. junction boxes:  An electrical junction box is included in the attic to make the wiring and installation of a vent fan easier, if, for example, you decide to activate the passive system if your test results show an elevated radon level (4 pCi/L or more).  A separate junction box is placed in the living space to power the vent-fan alarm.  An alarm is installed along with the vent fan to indicate when the vent fan is not operating properly.

5. How can I get reliable radon test results?

Radon testing is easy and the only way to find out if you have a radon problem in your home.

a. Types of Radon Devices

Since you cannot see or smell radon, special equipment is needed to detect it.  When you’re ready to test your home, you can order a radon test kit by mail from a qualified radon measurement service provider or laboratory.  You can also hire a qualified radon tester, very often a home inspector, who will use the radon device(s) suitable to your situation. If you hire a home inspector, make sure you hire a qualified InterNACHI member — specifically, an IAC2 certified air-quality professional.  The most common types of radon testing devices are listed below.

Passive Devices

Passive radon-testing devices do not need power to function.  These include charcoal canisters, alpha-track detectors, charcoal liquid scintillation devices, and electret ion chamber detectors, which are available in hardware, drugstores, and other stores; they can also be ordered by mail or phone.  These devices are exposed to the air in the home for a specified period of time, and then sent to a laboratory for analysis.  Both short-term and long-term passive devices are generally inexpensive. Some of these devices may have features that offer more resistance to test interference or disturbance than other passive devices. Qualified radon testers may use any of these devices to measure the home’s radon level.

Active Devices

Active radon-testing devices require power to function. These include continuous radon monitors and continuous working-level monitors.  They continuously measure and record the amount of radon and its decay products in the air.  Many of these devices provide a report of this information, which can reveal any unusual or abnormal swings in the radon level during the test period. A qualified tester can explain this report to you.  In addition, some of these devices are specifically designed to deter and detect test interference. Some technically advanced active devices offer anti-interference features.  Although these tests may cost more, they may ensure a more reliable result.

b. General Information for All Devices

A state or local radon official can explain the differences between devices, and recommend the ones which are most appropriate for your needs and expected testing conditions.

Make sure to use a radon measurement device from a qualified laboratory.  Certain precautions should be followed to avoid interference during the test period.  See the Radon Testing Checklist for more information on how to get a reliable test result.

Radon Test Device Placement

The EPA recommends that testing device(s) be placed in the lowest level of the home suitable for occupancy. This means testing in the lowest level (such as a basement) which a buyer could use for living space without renovations. The test should be conducted in a room to be used regularly (such as a family room, living room, play room, den or bedroom); do not test in a kitchen, bathroom, laundry room or hallway.  Usually, the buyer decides where to locate the radon test, based on their expected use of the home.  A buyer and seller should explicitly discuss and agree on the test location to avoid any misunderstanding.  Their decision should be clearly communicated to the person performing the test.

c. Preventing or Detecting Test Interference

There is a potential for test interference in real estate transactions. There are several ways to prevent or detect test interference:

Use a test device that frequently records radon or decay-product levels to detect unusual swings.

Employ a motion detector to determine whether the test device has been moved or if testing conditions have changed.

Use a proximity detector to reveal the presence of people in the room, which may correlate to possible changes in radon levels during the test.

Record the barometric pressure to identify weather conditions which may have affected the test.

Record the temperature to help assess whether doors and windows have been opened during the test.

Apply tamper-proof seals to windows to ensure closed-house conditions.

Have the seller/occupant sign a non-interference agreement.

Home buyers and sellers should consult a qualified radon test provider about the use of these precautions.

d. Length of Time to Test

There are two general ways to test your home for radon:

Because radon levels vary from day to day and from season to season, a short-term test is less likely than a long-term test to tell you your year-round average radon level.  However, if you need results quickly, a short-term test may be used to decide whether to fix the home.

Short-Term Testing:

The quickest way to test is with short-term tests. Short-term tests remain in your home from two days to 90 days, depending on the device. There are two groups of devices which are more commonly used for short-term testing. The passive-device group includes alpha-track detectors, charcoal canisters, charcoal liquid scintillation detectors, and electret ion chambers. The active device group consists of different types of continuous monitors.

Whether you test for radon yourself, or hire a state-certified tester or a privately certified tester, all radon tests should be taken for a minimum of 48 hours. A longer period of testing is required for some devices.

Long-Term Testing

Long-term tests remain in your home for more than 90 days. Alpha-track andelectret ion chamber detectors are commonly used for this type of testing. A long-term test will give you a reading that is more likely to tell you your home’s year-round average radon level than a short-term test. If time permits, long-term tests (more than 90 days) can be used to confirm initial short-term results. When long-term test results are 4 pCi/L or higher, the EPA recommends mitigating the home.

e. Doing a Short-Term Test…

If you are testing in a real estate transaction and you need results quickly, any of the following three options for short-term tests are acceptable in determining whether the home should be fixed. Any real estate test for radon should include steps to prevent or detect interference with the testing device.

When Choosing a Short-Term Testing Option…

There are trade-offs among the short-term testing options.  Two tests taken at the same time (simultaneous) would improve the precision of this radon test.  One test followed by another test (sequential) would most likely give a better representation of the seasonal average.  Both active and passive devices may have features which help to prevent test interference.  Your state radon office can help you decide which option is best.

Short-Term Testing Options What to Do Next
Passive:
Take two short-term tests at the same time in the same location for at least 48 hours.or  

Take an initial short-term test for at least 48 hours.  Immediately upon completing the first test, do a second test using an identical device in the same location as the first test.

Fix the home if the average of two tests is 4 pCi/L or more.

Fix the home if the average of the two tests is 4 pCi/L or more.

Active:
Test the home with a continuous monitor for at least 48 hours.
Fix the home if the average radon level is 4 pCi/L or more.

f.  Using testing devices properly for reliable results.

If you do the test yourself:

When you are taking a short-term test, close windows and doors and keep them closed, except for normal entry and exit.  If you are taking a short-term test lasting less than four days, be sure to:

Close your windows and outside doors at least 12 hours before beginning the test.

Do not conduct short-term tests lasting less than four days during severe storms or periods of high winds.

Follow the testing instructions and record the start time and date.

Place the test device at least 20 inches above the floor in a location where it will not be disturbed and where it will be away from drafts, high heat, high humidity, and exterior walls.

Leave the test kit in place for as long as the test instructions say.

Once you have finished the test, record the stop time and date, re-seal the package, and return it immediately to the lab specified on the package for analysis.

You should receive your test results within a few weeks. If you need results quickly, you should find out how long results will take and, if necessary, request expedited service.

If you hire a qualified radon tester:

In many cases, home buyers and sellers may decide to have the radon test done by a qualified radon tester who knows the proper conditions, test devices, and guidelines for obtaining a reliable radon test result.  They can also:

  • evaluate the home and recommend a testing approach designed to make sure you get reliable results;
  • explain how proper conditions can be maintained during the radon test;
  • emphasize to occupants of a home that a reliable test result depends on their cooperation.  Interference with, or disturbance of, the test or closed-house conditions will invalidate the test result;
  • analyze the data and report measurement results; and
  • provide an independent test.

g. Interpreting Radon Test Results

The average indoor radon level is estimated to be about 1.3 pCi/L; roughly 0.4 pCi/L of radon is normally found in the outside air. The U.S. Congress has set a long-term goal that indoor radon levels be no more than outdoor levels. While this goal is not yet technologically achievable for all homes, radon levels in many homes can be reduced to 2 pCi/L or below.

Radon Test Results Reported in Two Ways

Your radon test results may be reported in either picoCuries per liter of air (pCi/L) or working levels (WL). If your test result is in pCi/L, the EPA recommends you fix your home if your radon level is 4 pCi/L or higher. If the test result is in WL, the EPA recommends you fix the home if the working level is 0.02 WL or higher.  Some states require WL results to be converted to pCi/L to minimize confusion.

Sometimes, short-term tests are less definitive about whether the home is at or above 4 pCi/L, particularly when the results are close to 4 pCi/L. For example, if the average of two short-term tests is 4.1 pCi/L, there is about a 50% chance that the year-round average is somewhat below 4 pCi/L.

However, the EPA believes that any radon exposure carries some risk; no level of radon is safe. Even radon levels below 4 pCi/L pose some risk.  You can reduce your risk of lung cancer by lowering your radon level.

As with  other environmental pollutants, there is some uncertainty about the magnitude of radon health risks. However, we know more about radon risks than risks from most other cancer-causing substances. This is because estimates of radon risks are based on data from human studies on underground miners. Additional studies on more typical populations are underway.

Your radon measurement will give you an idea of your risk of getting lung cancer from radon. Your chances of getting lung cancer from radon depend mostly on:

  • your home’s radon level;
  • the amount of time you spend in your home; and
  • whether you are a smoker or have ever smoked.

Smoking combined with radon is an especially serious health risk. If you smoke or are a former smoker, the presence of radon greatly increases your risk of lung cancer. If you stop smoking now and lower the radon level in your house, you will reduce your lung cancer risk.

Based on information contained in the National Academy of Sciences’ 1998 report, The Health Effects of Exposure to Indoor Radon, your radon risk may be somewhat higher than shown, especially if you have never smoked.  It’s never too late to reduce your risk to lung cancer.  Don’t wait to test and fix a radon problem.  If you are a smoker, stop smoking.

Go to the Radon Risk Comparison Charts

Radon Testing Checklist

For reliable test results, follow this Radon Testing Checklist carefully.  Testing for radon is not complicated.  Improper testing may yield inaccurate results and require another test.  Disturbing or interfering with the test device or with closed-house conditions may invalidate the test results, and is actually illegal in some states.  If the seller or qualified tester cannot confirm that all items have been completed, take another test.

Before conducting a radon test:

Notify the occupants of the importance of proper testing conditions. Give the occupants written instructions or a copy of this Guide and explain the directions carefully.

Conduct the radon test for a minimum of 48 hours; some test devices have a minimum exposure time greater than 48 hours.

When doing a short-term test ranging from two to four days, it is important to maintain closed-house conditions for at least 12 hours before the beginning of the test and during the entire test period.

When doing a short-term test ranging from four to seven days, the EPA recommends that closed-house conditions be maintained.

If you conduct the test yourself, use a qualified radon measurement device and follow the laboratory’s instructions.  Your state may be able to provide you with a list of do-it-yourself test devices available from qualified laboratories.

If you hire someone to do the test, hire only a qualified individual.  Some states issue photo identification (ID) cards; ask to see it.  The tester’s ID number, if available, should be included or noted in the test report.

The test should include method(s) to prevent or detect interference with testing conditions, or with the testing device itself.

If the house has an active radon-reduction system, make sure the vent fan is operating properly.  If the fan is not operating properly, have it (or ask to have it) repaired and then test it.

“Closed-house conditions” mean keeping all windows closed, keeping doors closed except for normal entry and exit, and not operating fans or other machines which bring in air from outside.  Fans that are part of a radon-reduction system or small exhaust fans operating for only short periods of time may run during the test.

During a radon test:

Maintain closed-house conditions during the entire time of a short-term test, especially for tests shorter than one week.

Operate the home’s heating and cooling systems normally during the test. For tests lasting less than one week, operate only air-conditioning units which re-circulate interior air.

Do not disturb the test device at any time during the test.

If a radon-reduction system is in place, make sure the system is working properly and will be in operation during the entire radon test.

After a radon test:

If you conduct the test yourself, be sure to promptly return the test device to the laboratory.  Be sure to complete the required information, including start and stop times, test location, etc.

If an elevated level is found, fix the home. Contact a qualified radon-reduction contractor about lowering the radon level.  The EPA recommends that you fix the home when the radon level is 4 pCi/L or more.

Be sure that you or the radon tester can demonstrate or provide information to ensure that the testing conditions were not violated during the testing period.

6. What should I do if the radon level is high?

a. High radon levels can be reduced.

The EPA recommends that you take action to reduce your home’s indoor radon levels if your radon test result is 4 pCi/L or higher. It is better to correct a radon problem before placing your home on the market because then you will have more time to address a radon problem.

If elevated levels are found during the real estate transaction, the buyer and seller should discuss the timing and costs of the radon reduction.  The cost of making repairs to reduce radon levels depends on how your home was built and other factors. Most homes can be fixed for about the same cost as other common home repairs, such as painting or having a new hot water heater installed. The average cost for a contractor to lower radon levels in a home can range from $800 to about $2,500.

b. How to Lower The Radon Level in Your Home

A variety of methods can be used to reduce radon in homes. Sealing cracks and other openings in the foundation is a basic part of most approaches to radon reduction. The EPA does not recommend the use of sealing alone to limit radon entry.  Sealing alone has not been shown to lower radon levels significantly or consistently.

In most cases, a system with a vent pipe and fan is used to reduce radon.  These “sub-slab depressurization” systems do not require major changes to your home. Similar systems can also be installed in homes with crawlspaces.  These systems prevent radon gas from entering the home from below the concrete floor and from outside the foundation.  Radon mitigation contractors may use other methods that may also work in your home. The right system depends on the design of your home and other factors.

Radon and Home Renovations

If you are planning any major renovations, such as converting an unfinished basement area into living space, it is especially important to test the area for radon before you begin.

If your test results indicate an elevated radon level, radon-resistant techniques can be inexpensively included as part of the renovation. Major renovations can change the level of radon in any home.  Test again after the work is completed.

You should also test your home again after it is fixed to be sure that radon levels have been reduced. If your living patterns change and you begin occupying a lower level of your home (such as a basement) you should re-test your home on that level. In addition, it is a good idea to re-test your home sometime in the future to be sure radon levels remain low.

c. Selecting a Radon-Reduction (Mitigation) Contractor

Select a qualified radon-reduction contractor to reduce the radon levels in your home.  Any mitigation measures taken or system installed in your home must conform to your state’s regulations.

The EPA recommends that the mitigation contractor review the radon measurement results before beginning any radon-reduction work.  Test again after the radon mitigation work has been completed to confirm that previous elevated levels have been reduced.

d. What can a qualified radon-reduction contractor do for you?

A qualified radon-reduction (mitigation) contractor should be able to:

  • review testing guidelines and measurement results, and determine if additional measurements are needed;
  • evaluate the radon problem, and provide you with a detailed, written proposal on how radon levels will be lowered;
  • design a radon-reduction system;
  • install the system according to EPA standards, or state or local codes; and
  • make sure the finished system effectively reduces radon levels to acceptable levels.

Choose a radon-mitigation contractor to fix your radon problem just as you would for any other home repair.  You may want to get more than one estimate.  Ask for and check their references.  Make sure the person you hire is qualified to install a mitigation system.  Some states regulate or certify radon-mitigation services providers.

Be aware that a potential conflict of interest exists if the same person or firm performs the testing and installs the mitigation system.  Some states may require the homeowner to sign a waiver, in such cases. Contact your state radon office for more information.

e. Radon in Water

The radon in your home’s indoor air can come from two sources:  the soil and your water supply.  Compared to radon entering your home through water, radon entering your home through soil is a much larger risk.  If you’ve tested for radon in air and have elevated radon levels, and your water comes from a private well, have your water tested.  The devices and procedures for testing your home’s water supply are different from those used for measuring radon in air.

The radon in your water supply poses an inhalation risk and an ingestion risk.  Research has shown that your risk of lung cancer from breathing radon in the air is much larger than your risk of stomach cancer from swallowing water with radon in it.  Most of your risk from radon in water comes from radon released into the air when water is used for showering and other household purposes.

Radon in your home’s water is not usually a problem when its source is surface water.  Radon in water is more likely when its source is ground water, e.g., a private well or a public water supply system that uses ground water.  Some public water systems treat their water to reduce radon levels before it is delivered to your home.  If you are concerned that radon may be entering your home through the water, and your water comes from a public water supply, contact your water supplier.

If you’ve tested your private well and have radon in your water supply, it can be treated in one of two ways.  Point-of-entry treatment can effectively remove radon from the water before it enters your home.  Point-of-entry treatment usually employs either granular activated-carbon (GAC) filters, or aeration devices.  While GAC filters usually cost less than aeration devices, filters can collect radioactivity and may require a special method of disposal.  Point-of-use treatment devices remove radon from your water at the tap, but only treat a small portion of the water you use, e.g., the water you drink.  Point-of-use devices are not effective in reducing the risk of breathing radon released into the air from all water used in the home.